Efficient linear, decoupled, and unconditionally stable scheme for a ternary Cahn-Hilliard type Nakazawa-Ohta phase-field model for tri-block copolymers

نویسندگان

چکیده

We establish a ternary Cahn-Hilliard type Nakazawa-Ohta phase-field model for the triblock copolymer, and study its numerical approximation. The is highly coupled nonlinear system, consisting of two equations nonlocal equations. solve by constructing second-order accurate, time-marching scheme via Scalar Auxiliary Variable (SAV) approach combined with stabilization technique. At every time step, composed several decoupled bi-Laplace equations, which makes it first linear fully-decoupled scheme. further prove unconditional energy stability rigorously perform numerous simulations in 2D 3D to illustrate numerically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system

We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...

متن کامل

An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model

We propose an original scheme for the time discretization of a triphasic CahnHilliard/Navier-Stokes model. This scheme allows an uncoupled resolution of the discrete CahnHilliard and Navier-Stokes system, is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved and a convergence study is performed ...

متن کامل

Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows∗∗∗

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogou...

متن کامل

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, ...

متن کامل

An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System

We present an unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation modeling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model and describes two phase very viscous flows in porous media. The scheme is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2021

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2020.125463